RADIUS/UDP Considered Harmful
The Blast-RADIUS Attack

Sharon Goldberg!, Miro Haller?, Nadia Heninger?, Mike Milano®, Dan Shumow?*,
Marc Stevens®, Adam Suhl?

1Cloudflare, 2UC San Diego, 3BastionZero, *Microsoft Research, ®>Centrum Wiskunde & Informatica

August 18, 2024

1/26

Attack Summary

MitM network attacker can forge arbitrary RADIUS responses (for non-EAP
authentication modes)

e.g., can log into victim device with bogus credentials

This is a protocol vulnerability: RADIUS hard codes weak authentication based on
MD5

2/26

What is RADIUS?

e RADIUS is the de facto standard lightweight protocol for authentication,
authorization, and accounting (AAA) for networked devices.

® Log into X but handle auth on server Y

Login
Username: ... ' ﬁ}
Password: ... RAD' US
—
User Access Granted! Device Auth Server
(RADIUS Client) (RADIUS Server)

3/26

What uses RADIUS?

RADIUS is in wide-spread use, and is supported by essentially every switch,
router, access point, and VPN concentrator product sold in the past twenty-
five years.

(Alan DeKok, lead developer of FreeRADIUS, [DeK24])

® Backbone routers

® \VPNs

® ISP infrastructure (DSL/FTTH)

® |oT devices

® |dentity Providers and MFA (Okta, Duo)

® Not vulnerable to this attack: 802.1X, enterprise WiFi, eduroam

4/26

What uses RADIUS?

ENERGY AUTOMATION PRODUCTS

SICAM A8000

Substation Automation for

Industry and Infrastructure
- ® |ndustrial control systems
Fulfillment of high cyber security requirements according
to BDEW whitepaper, NERC CIP and IEC62351 with support
for[RADIUS JSyslog, IPSec and TLS

® Power grid equipment

5/26

RADIUS still uses 90s-era cryptography

e MD5 was broken 20 years ago
® But backward compatibility is hard

® Perceived lack of urgency to deprecate

As of the writing of this specification, RADIUS/UDP is still widely used, even
though it depends on MD5 and "ad hoc" constructions for security. While
MDb5 has been broken, it is a testament to the design of RADIUS that there
have been (as yet) no attacks on RADIUS Authenticator signatures which are
stronger than brute-force.

(“Deprecating Insecure Practices in RADIUS” IETF draft, 2023)

6/26

RADIUS still uses 90s-era cryptography

e MD5 was broken 20 years ago
® But backward compatibility is hard

® Perceived lack of urgency to deprecate

As of the writing of this specification, RADIUS/UDP is still widely used, even
though it depends on MD5 and "ad hoc" constructions for security. While
MDb5 has been broken, it is a testament to the design of RADIUS that there
have been (as yet) no attacks on RADIUS Authenticator signatures which are
stronger than brute-force.

(“Deprecating Insecure Practices in RADIUS” IETF draft, 2023)

..until now!

6/26

How does RADIUS work?

Login . Access-Request

Username: ... © Username: ... —
Password: ... Password: ...
— —
User Access Granted! Device M Auth Server
(RADIUS Client) l (RADIUS Server)

Access-Reject

® RADIUS requests and responses are often sent over UDP.

e (Client and server share fixed shared secret for authenticating responses and
obfuscating passwords.

7/26

Packet Formats

Access-Request =

Access-Accept =

Request Header

Request Nonce Attributes

4 bytes

16 random bytes User-Name test
Password Mjg2NzUlz

Accept Header

Response Authenticator

Attributes

4 bytes

16 byte ‘“MAC’’

Reply-Message Welcome test!

Exec-Privilege 4

Access-Reject =

Reject Header

Response Authenticator

Attributes

4 bytes

16 byte ‘MAC”

Reply-Message Access denied

8/26

Response Authenticator

Goal: Prevent forgery of packets, e.g., by machine-in-the-middle attacker.

The Response Authenticator from packet

Response Header || Response Authenticator || Attributes

is computed as
copied from request fixed, pre-configured

MD5 (|Response Header||Request Nonce||Attributes| | Shared Secret|)

copied from response

9/26

Is this a secure MAC?

MACs(M) = MD5(M||S)

10/26

Is this a secure MAC?

MACs(M) = MD5(M||S)
No!
Find collision MD5(M;) = MD5(M,), then

MD5(M;||S) = MD5(M,||S).

10/26

Is this a secure MAC?

MACs(M) = MD5(M||S)
No!
Find collision MD5(M;) = MD5(M,), then

MD5(M;||S) = MD5(M,||S).

Side note: what about
® MACs(M) = MD5(S||M)?

10/26

Is this a secure MAC?

MACs(M) = MD5(M||S)
No!
Find collision MD5(M;) = MD5(M,), then

MD5(M;||S) = MD5(M,||S).

Side note: what about
¢ MACs(M) = MD5(S||[M)? No (length extension)

10/26

Is this a secure MAC?

MACs(M) = MD5(M||S)
No!
Find collision MD5(M;) = MD5(M,), then

MD5(M;||S) = MD5(M,||S).

Side note: what about
¢ MACs(M) = MD5(S||[M)? No (length extension)
e MACs(M) = MD5(S||M||S)?

10/ 26

Is this a secure MAC?

MACs(M) = MD5(M||S)
No!
Find collision MD5(M;) = MD5(M,), then

MD5(M;||S) = MD5(M,||S).

Side note: what about
¢ MACs(M) = MD5(S||[M)? No (length extension)
® MACs(M) = MD5(S||M||S)? Yes?* (sandwich/envelope MAC)

*assuming proper padding

10/26

Blast-RADIUS: Turning Access-Reject Into Access-Accept

e MitM attacker wants to forge an Access-Accept
® Don't know shared secret, so can't compute Response Authenticator

® Attack: create an MD5 collision such that Access-Accept and Access-Reject will
produce the same Response Authenticator (simplified):

MD5(Access-Accept) = MD5(Access-Reject)
implies

MD5(Access-Accept || Secret) = MD5(Access-Reject || Secret).

® Trick server into sending the Access-Reject

11/26

Blast-RADIUS Attack Overview

login

4
password bogus

Attacker Victim Device MitM Auth Server

12/26

Blast-RADIUS Attack Overview

login

Attacker

4
password bogus

Request

Victim Device

~

Auth Server

12/26

Blast-RADIUS Attack Overview

login

Attacker

4
password bogus

Compute collision:

Request

Victim Device

~

Auth Server

12/26

Blast-RADIUS Attack Overview

login

Attacker

4
password bogus

Compute collision:

Request

Request’

Victim Device

~

~

AN

Reject

Auth Server

12/26

Blast-RADIUS Attack Overview

login

Attacker

4
password bogus

Compute collision:

Request

Request’

Victim Device

~

~

AN

Accept

MitM

AN

Reject

copy Response-Authenticator

Auth Server

12/26

Blast-RADIUS Attack Overview

login

Attacker

4
password bogus

Access Granted!

Compute collision:

Request

Request’

Victim Device

~

~

AN

Accept

MitM

AN

Reject

copy Response-Authenticator

Auth Server

12/26

MD5 Collision Attack History

&
\1‘5&66
>
«

o'
RS

I | | | |
1990 1995 2000 2005 2010

|
2d15

|
2020

13/26

MD5 Collision Attack History

o
S
S &
) <
\.b ’\OQ
& \'\{o
& 9
N ©
> H
¥ >
K N
A\ <
— ——|f % —f : : %
1990 1995 2000 2005 2010 2015 2020

® MDS5 collision: unstructured strings Gi, G with MD5(G;) = MD5(G).

13/26

MD5 Collision Attack History

$6\\ S
Q‘:’)\ \%\/ &?JX
o8 st RS
\.b .'\0(\ N &
& §§ o 9s
& < & O
& P R N\
K N &
N & e
— ® f f &—1 ——e— f f
1990 1995 2000 2005 2010 2015 2020

® MDS5 collision: unstructured strings Gi, G with MD5(G;) = MD5(G).
® Chosen-prefix collision: given prefixes P1, P>, produces Gi, Gy such that:
MD5(P1||G1) = MD5(Pz||Gz)

13/26

MD5 Collision Attack History N
$6\ S
Q‘o\ S ,@X
bk \$k "\OQ \.\%
\§b & N2
o & SRS
& NS
N »° & O
q@? Q KR A
) = ARG
\ & &
— ® f f &—1 ——e— f f
1990 1995 2000 2005 2010 2015 2020

® MDS5 collision: unstructured strings Gi, G with MD5(G;) = MD5(G).

® Chosen-prefix collision: given prefixes P1, P>, produces Gi, Gy such that:
MD5(P1[G1) = MD5(P2|[G2)

® Appending any common suffix S still collides:
MD5(P1[|G1[|S) = MD5(P2||G2||S)

13/26

MD5 Collision Attack History

$°/\\ S
Q‘:’)\ \%\/ &?JX
O §k &0 RS
& & & ¥
o & < S
& N A &
\15\ © @S} S \b
& P R K &
Y = & P ©
O » O oo Sk
) < S \
I | P | | & | P & | | |
— & t t &— & 1 T T
1990 1995 2000 2005 2010 2015 2020

® MDS5 collision: unstructured strings Gi, G with MD5(G;) = MD5(G).

® Chosen-prefix collision: given prefixes P1, P>, produces Gi, Gy such that:

MD5(P1[G1) = MD5(P2|[G2)
® Appending any common suffix S still collides:

MD5(P1[[G1[|S) = MD5(Pa|G2[|5)

13/26

MD5 Collision Attack History

$°/\\ S
Q‘o\ & 28
SN ARG >
Q S & L i
\.b '\OQ O\\\ & bb
& NS @ S
& © & o . \be N
& P PPN © W
(0~$ @ o < o /Q~
O N & P > &
) < ONRS D S
1990 1995 2000 2005 2010 2015 2020

® MD?5 collision: unstructured strings Gi, Gy with MD5(G;) = MD5(G).

® Chosen-prefix collision: given prefixes P1, P>, produces Gi, Gy such that:
MD5(P1[G1) = MD5(P2|[G2)

® Appending any common suffix S still collides:

MD5(P1[[G1[|S) = MD5(Pa|G2[|5)

13/26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

® MD?5 collision: unstructured strings Gi, Gy with MD5(G;) = MD5(G).

® Chosen-prefix collision: given prefixes P1, P>, produces Gi, Gy such that:
MD5(P1[G1) = MD5(P2|[G2)

® Appending any common suffix S still collides:

MD5(P1[[G1[|S) = MD5(Pa|G2[|5)

13/26

MD5 Collision for RADIUS Response Authenticator

Given prefixes Py, P, generated collision gibberish Gy, Gy, and suffix S:

MD5(P1||G1]|S) = MD5(Pz||G2[|S)

Applied to RADIUS:

| Response /—\uthenticator|

= MD5(|Accept Header” Request Nonce ”Accept Attributes”Accept Gibberish ” Secret |)

= MD5(| Reject Header ” Request Nonce” Reject Attributes ” Reject Gibberish ” Secret |)

predicted prefixes P1, P gibberish Gi, G2 suffix S

(unknown)

14 /26

Challenge 1: Online Collision Computation

Access-Request = | Request Header ” Request Nonce ” Attributes

Reject Prefix = | Reject Header ” Request Nonce |

® Prefixes require knowing the Request Nonce.

15/26

Challenge 1: Online Collision Computation

Access-Request = | Request Header ” Request Nonce ” Attributes

Reject Prefix = | Reject Header ” Request Nonce |

® Prefixes require knowing the Request Nonce.

e Collision must be computed before RADIUS client times out.

15/26

Challenge 1: Online Collision Computation

Access-Request = | Request Header ” Request Nonce ” Attributes

Reject Prefix = | Reject Header ” Request Nonce |

® Prefixes require knowing the Request Nonce.
e Collision must be computed before RADIUS client times out.

e Collision time depends on collision length and type:
® MD5(G;) = MD5(G,) and MD5(P||G1) = MD5(P||Gz) takes seconds.
® Chosen-prefix collision of [Ste+09]: 204-byte G; and Gy in 28h on 215 PS3.

® We optimized our 428-byte collision from days to < 5m on 47 servers.

15/26

Challenge 2: RejectGibberish Injection

® Server needs to include Reject Gibberish in Response Authenticator:

|\/|D5(| Reject Header ” Request Nonce ” Reject Attributes ” Reject Gibberish ” Secret|)

How do we get it to include Reject Gibberish in its Access-Reject?

16 /26

Challenge 2: RejectGibberish Injection

® Server needs to include Reject Gibberish in Response Authenticator:

|\/|D5(| Reject Header ” Request Nonce ” Reject Attributes ” Reject Gibberish ” Secret|)

How do we get it to include Reject Gibberish in its Access-Reject?

® The Proxy-State attribute:
This Attribute is available to be sent by a proxy server to another server when forward-
ing an Access-Request and MUST be returned unmodified in the Access-Accept,
Access-Reject or Access-Challenge.

(RFC 2058, emphasis added)

16/ 26

Challenge 2: RejectGibberish Injection

® Server needs to include Reject Gibberish in Response Authenticator:

|\/|D5(| Reject Header ” Request Nonce ” Reject Attributes ” Reject Gibberish ” Secret|)

How do we get it to include Reject Gibberish in its Access-Reject?

® The Proxy-State attribute:
This Attribute is available to be sent by a proxy server to another server when forward-
ing an Access-Request and MUST be returned unmodified in the Access-Accept,
Access-Reject or Access-Challenge.

(RFC 2058, emphasis added)

Access-Request =

Request Header” Request Nonce ” Attributes ” Proxy-State Header” Reject Gibberish|

16/ 26

Aside: MD5 Collision Internals ([SLWO07])

Track “Intermediate Hash Value” IHV (4 words)
dIHV = difference in IHV between pair of messages.
dIHV = 0 means collision.

Phase 1: Birthday

Find gibberish blocks Gl(o), G2(0) that put d/HV into a nice subspace

Phase 2: Near-collision , ,

Repeatedly find gibberish blocks G{'H), Gz('H) that keep dIHV in the subspace and
reduce its hamming weight

Eventually dIHV =0

Tradeoff: number of near-collision blocks vs difficulty of finding each near-collision block

17/26

Challenge 3: Gibberish Length

Maximum length of Proxy-State is 253 bytes.
Gibberish that short would take too long to compute (we want ~ 400 bytes)

18/26

Challenge 3: Gibberish Length

Maximum length of Proxy-State is 253 bytes.
Gibberish that short would take too long to compute (we want ~ 400 bytes)
Solution: Embed extra Proxy-State header(s) inside gibberish

Proxy State 1 Proxy State 2

Reject Gibberish | = | Gibberish ” Header ” Gibberish |

18/26

Blast-RADIUS Attack Example (1/3)

1. Attacker triggers Access-Request.
2. MITM attacker observes Access-Request.

| 0047|[726164617574...72] 010674...3a

Request Nonce

3. MITM attacker predicts the following prefixes

AcceptPrefix = [02][1d][01c0][726164617574...72]
RejectPrefix = [03][1d][01c0|[726164617574..72]

to compute the MD5 chosen-prefix collision gibberish.

AcceptGibberish = (428 bytes)
RejectGibberish = (428 bytes)

Proxy State Proxy State

19/26

Blast-RADIUS Attack Example (2/3)

4. MITM sends Access-Request with appended RejectGibberish to server.

[01][1d][0047][726164617574...72] 010674...3a [21 |[ec][96...86][21| cO][f5...9€

RejectGibberish

5. MITM intercepts Access-Reject, learning the Response Authenticator.

[03][1d][01c0][6034d0ff16e4...30][21 [[ec][96...86][21][o 5...0¢ |

Response Authenticator

6. MITM puts Response Authenticator in Access-Accept packet with appended

AcceptGibberish.
[02][1d][01c0][6034d0ff16e4...30] 21 [ec][3d...86][21 [o [5...0¢ |

AcceptGibberish

20/26

Blast-RADIUS Attack Example (3/3)

7. Access-Accept and Access-Reject produce the same Response Authenticator, and,
hence, pass the RADIUS client authentication check.

Response Authenticator

| 6034d0ff16e4...30

- MD5(|01c0||726164617574...72||f5...9e||Shared Secret |)

AcceptPrefix AcceptGibberish
= MD5([03][1d][01co][726164617574. 72][21 [][96. .86 [21 [cO [5...9¢]| Shared Secret |)
RejectPrefix RejectGibberish

21/26

What about EAP-TLS?

® Extensible Authentication Protocol supports authentication modes beyond simple

password
® cg., EAP-TLS and EAP-TTLS are two such modes
@ Verify Certificate

— Authenticating to network “eduroam”

A . I
Before authenticating to server “auth.ucsd.edu”, you should examine the server's
certificate to ensure that it is appropriate for this network.

To view the certificate, click 'Show Certificate'

? Show Certificate Cancel

22/26

What about EAP-TLS?

® TLS does not wrap RADIUS: RADIUS wraps EAP wraps TLS

® Access-Accept packet is still sent over UDP!

23/26

What about EAP-TLS?

® TLS does not wrap RADIUS: RADIUS wraps EAP wraps TLS
® Access-Accept packet is still sent over UDP!
® BUT, any packet with an EAP-Message requires a separate
Message-Authenticator attribute, which uses HMAC-MD5:
A RADIUS client receiving an Access-Accept, Access-Reject or Access-
Challenge with a Message-Authenticator attribute present MUST calculate the

correct value of the Message-Authenticator and silently discard the packet if it
does not match the value sent.

(RFC 3579)

23/26

Impact
Affected modes:

e PAP, CHAP, MS-CHAP are vulnerable

® EAP modes likely not vulnerable (require Message-Authenticator)

24 /26

Impact

Affected modes:
e PAP, CHAP, MS-CHAP are vulnerable

® EAP modes likely not vulnerable (require Message-Authenticator)

Affected deployments: Requires MITM network access
® RADIUS/UDP traffic over open internet is vulnerable.

® RADIUS/UDP traffic over VLAN or IPSEC requires network access; useful for
lateral movement within org.

24 /26

Impact

Affected modes:
e PAP, CHAP, MS-CHAP are vulnerable

® EAP modes likely not vulnerable (require Message-Authenticator)

Affected deployments: Requires MITM network access
® RADIUS/UDP traffic over open internet is vulnerable.

® RADIUS/UDP traffic over VLAN or IPSEC requires network access; useful for
lateral movement within org.

Timing:
e RADIUS client timeouts < 1m, our PoCs take ~ 5m.

e Optimizations feasible: parallelizes well, hardware implementation.

24 /26

Mitigations

® Massive disclosure with 90+ vendors.

® Challenges: widespread, backwards compatibility.

Some power plants use
RADIUS [TKSA14].

25 /26

Mitigations

® Massive disclosure with 90+ vendors.
® Challenges: widespread, backwards compatibility.

Short-term:
® Message-Authenticator attribute uses HMAC-MD5 not
vulnerable to MD5 collisions.
e All requests and responses should include and verify
Message-Authenticator.

Some power plants use
RADIUS [TKSA14].

25 /26

Mitigations

® Massive disclosure with 90+ vendors.

® Challenges: widespread, backwards compatibility.

Short-term:

® Message-Authenticator attribute uses HMAC-MD5 not
vulnerable to MD5 collisions.

e All requests and responses should include and verify
Message-Authenticator.

Long-term:
¢ Encapsulate all RADIUS traffic in (D)TLS tunnel.
e Current IETF draft is being standardized [RW24].

Some power plants use
RADIUS [TKSA14].

25 /26

Blast-RADIUS attack

ALL MODERN DIGITAC
INFRASTRUCTURE

Attack summary: MD5 collision attack on
RADIUS authentication by MitM adversary.

D0
2
https://blastradius.fail

A PROJECT SOME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY

RADIUS/UDP Considered Harmful MANTAINNG
Sharon Goldberg, Miro Haller, Nadia Heninger, Mike Milano, SINCE 2003
Dan Shumow, Marc Stevens, and Adam Suhl. (_J

USENIX Security, August 2024.

E 1

26 /26

https://blastradius.fail

References

1/6

References |

[dB94]

[DeK24]

[RW24]

Bert den Boer and Antoon Bosselaers. “Collisions for the Compression
Function of MD5". In: EUROCRYPT'93. Ed. by Tor Helleseth. Vol. 765.
LNCS. Springer, Heidelberg, Germany, May 1994, pp. 293-304. DOI:
10.1007/3-540-48285-7_26.

Alan DeKok. RADIUS and MD5 Collision Attacks. https://
networkradius.com/assets/pdf/radius_and_md5_collisions.pdf.

2024.

Jan-Frederik Rieckers and Stefan Winter. (Datagram) Transport Layer
Security ((D)TLS Encryption for RADIUS. Internet-Draft
draft-ietf-radext-radiusdtls-bis-02. Work in Progress. Internet Engineering
Task Force, July 2024. 38 pp. URL:
https://datatracker.ietf.org/doc/draft-ietf-radext-
radiusdtls-bis/02/.

2/6

https://doi.org/10.1007/3-540-48285-7_26
https://networkradius.com/assets/pdf/radius_and_md5_collisions.pdf
https://networkradius.com/assets/pdf/radius_and_md5_collisions.pdf
https://datatracker.ietf.org/doc/draft-ietf-radext-radiusdtls-bis/02/
https://datatracker.ietf.org/doc/draft-ietf-radext-radiusdtls-bis/02/

References |l

[SLWO7]

[Ste+09]

[TKSA14]

Marc Stevens, Arjen K. Lenstra, and Benne de Weger. “Chosen-Prefix

Collisions for MD5 and Colliding X.509 Certificates for Different Identities".
In: EUROCRYPT. Vol. 4515. Lecture Notes in Computer Science. Springer,

2007, pp. 1-22.

Marc Stevens et al. “Short Chosen-Prefix Collisions for MD5 and the

Creation of a Rogue CA Certificate”. In: CRYPTO. Vol. 5677. Lecture
Notes in Computer Science. Springer, 2009, pp. 55—69.

Henrik Thejl, Nagaraja K S, and Karl-Georg Aspacher. “A method for user
management and a power plant control system thereof for a power plant
system”. Pat. 2765466. Siemens Gamesa Renewable Energy A/S. Jan. 24,
2014. URL: https://data.epo.org/publication-
server/rest/v1.0/publication-
dates/20190904/patents/EP2765466NWB1/document . pdf.

3/6

https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190904/patents/EP2765466NWB1/document.pdf
https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190904/patents/EP2765466NWB1/document.pdf
https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190904/patents/EP2765466NWB1/document.pdf

References ||

[WYO05]

Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash
Functions”. In: EUROCRYPT. Vol. 3494. Lecture Notes in Computer
Science. Springer, 2005, pp. 19-35.

4/6

Backup Slides

5/6

Attack Extensions

e Adversary can add arbitrary attributes in prefix for Access-Accept.

AcceptPrefix = | 01c0 || 726164617574...72| 1206000007db1d04

Attribute:
Exec-Privilege 04

® Proxy-State attributes are not the only way to inject the RejectGibberish.

® Any reflected user input could work, e.g. the User-Name or Vendor-Specific
attributes.
® |n Access-Request:
User-Name: OPZjN-_ayr83S-nc6q...Mt85
® |n Access-Reject:
Reply-Message: Login for OPZjN-_ayr83S-nc6q...Mt85 failed!

® The client does not need to support or parse these attributes.

6/6

	Appendix
	References
	References
	Backup Slides

