
RADIUS/UDP Considered Harmful
The Blast-RADIUS Attack

Sharon Goldberg1, Miro Haller2, Nadia Heninger2, Mike Milano3, Dan Shumow4,
Marc Stevens5, Adam Suhl2

1Cloudflare, 2UC San Diego, 3BastionZero, 4Microsoft Research, 5Centrum Wiskunde & Informatica

August 18, 2024

1 / 26

Attack Summary

MitM network attacker can forge arbitrary RADIUS responses (for non-EAP
authentication modes)

e.g., can log into victim device with bogus credentials

This is a protocol vulnerability: RADIUS hard codes weak authentication based on
MD5

2 / 26

What is RADIUS?

• RADIUS is the de facto standard lightweight protocol for authentication,
authorization, and accounting (AAA) for networked devices.

• Log into X but handle auth on server Y

User Device
(RADIUS Client)

Auth Server
(RADIUS Server)

Login

Username: ...

Password: ... RADIUS
Access Granted!

3 / 26

What uses RADIUS?

RADIUS is in wide-spread use, and is supported by essentially every switch,
router, access point, and VPN concentrator product sold in the past twenty-
five years.

(Alan DeKok, lead developer of FreeRADIUS, [DeK24])

• Backbone routers
• VPNs
• ISP infrastructure (DSL/FTTH)
• IoT devices
• Identity Providers and MFA (Okta, Duo)
• Not vulnerable to this attack: 802.1X, enterprise WiFi, eduroam

4 / 26

What uses RADIUS?

• Power grid equipment
• Industrial control systems

5 / 26

RADIUS still uses 90s-era cryptography

• MD5 was broken 20 years ago
• But backward compatibility is hard
• Perceived lack of urgency to deprecate

As of the writing of this specification, RADIUS/UDP is still widely used, even
though it depends on MD5 and "ad hoc" constructions for security. While
MD5 has been broken, it is a testament to the design of RADIUS that there
have been (as yet) no attacks on RADIUS Authenticator signatures which are
stronger than brute-force.

(“Deprecating Insecure Practices in RADIUS” IETF draft, 2023)

..until now!

6 / 26

RADIUS still uses 90s-era cryptography

• MD5 was broken 20 years ago
• But backward compatibility is hard
• Perceived lack of urgency to deprecate

As of the writing of this specification, RADIUS/UDP is still widely used, even
though it depends on MD5 and "ad hoc" constructions for security. While
MD5 has been broken, it is a testament to the design of RADIUS that there
have been (as yet) no attacks on RADIUS Authenticator signatures which are
stronger than brute-force.

(“Deprecating Insecure Practices in RADIUS” IETF draft, 2023)

..until now!

6 / 26

How does RADIUS work?

User Device
(RADIUS Client)

Auth Server
(RADIUS Server)

Login

Username: ...

Password: ...

Access-Request

Username: ...

Password: ...

Access-Accept

Access-Reject

or

Access Granted!

• RADIUS requests and responses are often sent over UDP.
• Client and server share fixed shared secret for authenticating responses and

obfuscating passwords.

7 / 26

Packet Formats

Access-Request = Request Header Request Nonce Attributes

4 bytes 16 random bytes User-Name test

Password Mjg2NzU1z

Access-Accept = Accept Header Response Authenticator Attributes

4 bytes 16 byte “MAC” Reply-Message Welcome test!

Exec-Privilege 4

Access-Reject = Reject Header Response Authenticator Attributes

4 bytes 16 byte “MAC” Reply-Message Access denied

8 / 26

Response Authenticator

Goal: Prevent forgery of packets, e.g., by machine-in-the-middle attacker.

The Response Authenticator from packet

Response Header Response Authenticator Attributes

is computed as

MD5 (Response Header Request Nonce Attributes Shared Secret).

copied from request

copied from response

fixed, pre-configured

9 / 26

Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)? No (length extension)
• MACS(M) = MD5(S∥M∥S)? Yes?* (sandwich/envelope MAC)

*assuming proper padding

10 / 26

Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)? No (length extension)
• MACS(M) = MD5(S∥M∥S)? Yes?* (sandwich/envelope MAC)

*assuming proper padding

10 / 26

Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)?

No (length extension)
• MACS(M) = MD5(S∥M∥S)? Yes?* (sandwich/envelope MAC)

*assuming proper padding

10 / 26

Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)? No (length extension)

• MACS(M) = MD5(S∥M∥S)? Yes?* (sandwich/envelope MAC)
*assuming proper padding

10 / 26

Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)? No (length extension)
• MACS(M) = MD5(S∥M∥S)?

Yes?* (sandwich/envelope MAC)
*assuming proper padding

10 / 26

Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)? No (length extension)
• MACS(M) = MD5(S∥M∥S)? Yes?* (sandwich/envelope MAC)

*assuming proper padding

10 / 26

Blast-RADIUS: Turning Access-Reject Into Access-Accept

• MitM attacker wants to forge an Access-Accept
• Don’t know shared secret, so can’t compute Response Authenticator

• Attack: create an MD5 collision such that Access-Accept and Access-Reject will
produce the same Response Authenticator (simplified):

MD5(Access-Accept) = MD5(Access-Reject)

implies

MD5(Access-Accept || Secret) = MD5(Access-Reject || Secret).

• Trick server into sending the Access-Reject

11 / 26

Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request Request′

RejectAccept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject

12 / 26

Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request

Request′

RejectAccept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject

12 / 26

Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request

Request′

RejectAccept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject

12 / 26

Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request Request′

Reject

Accept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject

12 / 26

Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request Request′

RejectAccept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject

12 / 26

Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request Request′

RejectAccept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject

12 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).

• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision Attack History

1990 1995 2000 2005 2010 2015 2020

M
D5 we

ak
ne

ss
[dB

94
]

Fu
ll M

D5 co
llis

ion
[W

Y0
5]

Ch
os
en

-pr
efi

x co
llis

ion
[SL

W
07

]

Ro
gu

e TL
S
CA

ce
rt

[St
e+

09
]

M
D5 co

ns
ide

red
de

ad

Bl
ast

-R
AD

IU
S

pre
sen

ter
bo

rn
he

re

• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)

13 / 26

MD5 Collision for RADIUS Response Authenticator
Given prefixes P1, P2, generated collision gibberish G1, G2, and suffix S :

MD5(P1||G1||S) = MD5(P2||G2||S)

Applied to RADIUS:

Response Authenticator

= MD5(Accept Header Request Nonce Accept Attributes Accept Gibberish Secret)

= MD5(Reject Header Request Nonce Reject Attributes Reject Gibberish Secret)
predicted prefixes P1, P2 gibberish G1, G2 suffix S

(unknown)

14 / 26

Challenge 1: Online Collision Computation

Access-Request = Request Header Request Nonce Attributes

Reject HeaderReject Prefix = Request Nonce

• Prefixes require knowing the Request Nonce.

• Collision must be computed before RADIUS client times out.

• Collision time depends on collision length and type:

• MD5(G1) = MD5(G2) and MD5(P||G1) = MD5(P||G2) takes seconds.

• Chosen-prefix collision of [Ste+09]: 204-byte G1 and G2 in 28h on 215 PS3.

• We optimized our 428-byte collision from days to ≤ 5m on 47 servers.

15 / 26

Challenge 1: Online Collision Computation

Access-Request = Request Header Request Nonce Attributes

Reject HeaderReject Prefix = Request Nonce

• Prefixes require knowing the Request Nonce.

• Collision must be computed before RADIUS client times out.

• Collision time depends on collision length and type:

• MD5(G1) = MD5(G2) and MD5(P||G1) = MD5(P||G2) takes seconds.

• Chosen-prefix collision of [Ste+09]: 204-byte G1 and G2 in 28h on 215 PS3.

• We optimized our 428-byte collision from days to ≤ 5m on 47 servers.

15 / 26

Challenge 1: Online Collision Computation

Access-Request = Request Header Request Nonce Attributes

Reject HeaderReject Prefix = Request Nonce

• Prefixes require knowing the Request Nonce.

• Collision must be computed before RADIUS client times out.

• Collision time depends on collision length and type:

• MD5(G1) = MD5(G2) and MD5(P||G1) = MD5(P||G2) takes seconds.

• Chosen-prefix collision of [Ste+09]: 204-byte G1 and G2 in 28h on 215 PS3.

• We optimized our 428-byte collision from days to ≤ 5m on 47 servers.

15 / 26

Challenge 2: RejectGibberish Injection

• Server needs to include Reject Gibberish in Response Authenticator:

MD5(Reject Header Request Nonce Reject Attributes Reject Gibberish Secret)
How do we get it to include Reject Gibberish in its Access-Reject?

• The Proxy-State attribute:
This Attribute is available to be sent by a proxy server to another server when forward-
ing an Access-Request and MUST be returned unmodified in the Access-Accept,
Access-Reject or Access-Challenge.

(RFC 2058, emphasis added)

Access-Request =
Request Header Request Nonce Attributes Proxy-State Header Reject Gibberish

16 / 26

Challenge 2: RejectGibberish Injection

• Server needs to include Reject Gibberish in Response Authenticator:

MD5(Reject Header Request Nonce Reject Attributes Reject Gibberish Secret)
How do we get it to include Reject Gibberish in its Access-Reject?

• The Proxy-State attribute:
This Attribute is available to be sent by a proxy server to another server when forward-
ing an Access-Request and MUST be returned unmodified in the Access-Accept,
Access-Reject or Access-Challenge.

(RFC 2058, emphasis added)

Access-Request =
Request Header Request Nonce Attributes Proxy-State Header Reject Gibberish

16 / 26

Challenge 2: RejectGibberish Injection

• Server needs to include Reject Gibberish in Response Authenticator:

MD5(Reject Header Request Nonce Reject Attributes Reject Gibberish Secret)
How do we get it to include Reject Gibberish in its Access-Reject?

• The Proxy-State attribute:
This Attribute is available to be sent by a proxy server to another server when forward-
ing an Access-Request and MUST be returned unmodified in the Access-Accept,
Access-Reject or Access-Challenge.

(RFC 2058, emphasis added)

Access-Request =
Request Header Request Nonce Attributes Proxy-State Header Reject Gibberish

16 / 26

Aside: MD5 Collision Internals ([SLW07])

Track “Intermediate Hash Value” IHV (4 words)
dIHV = difference in IHV between pair of messages.
dIHV = 0 means collision.
Phase 1: Birthday
Find gibberish blocks G (0)

1 , G (0)
2 that put dIHV into a nice subspace

Phase 2: Near-collision
Repeatedly find gibberish blocks G (i+1)

1 , G (i+1)
2 that keep dIHV in the subspace and

reduce its hamming weight
Eventually dIHV = 0

Tradeoff: number of near-collision blocks vs difficulty of finding each near-collision block

17 / 26

Challenge 3: Gibberish Length

Maximum length of Proxy-State is 253 bytes.
Gibberish that short would take too long to compute (we want ≈ 400 bytes)

Solution: Embed extra Proxy-State header(s) inside gibberish

Reject Gibberish = Gibberish Header Gibberish

Proxy State 1 Proxy State 2

18 / 26

Challenge 3: Gibberish Length

Maximum length of Proxy-State is 253 bytes.
Gibberish that short would take too long to compute (we want ≈ 400 bytes)
Solution: Embed extra Proxy-State header(s) inside gibberish

Reject Gibberish = Gibberish Header Gibberish

Proxy State 1 Proxy State 2

18 / 26

Blast-RADIUS Attack Example (1/3)
1. Attacker triggers Access-Request.
2. MITM attacker observes Access-Request.

01 1d 0047 726164617574...72 010674...3a

Request Nonce

3. MITM attacker predicts the following prefixes

AcceptPrefix = 02 1d 01c0 726164617574...72

RejectPrefix = 03 1d 01c0 726164617574...72

to compute the MD5 chosen-prefix collision gibberish.

AcceptGibberish = 21 ec 3d...86 21 c0 f5...9e (428 bytes)

RejectGibberish = 21 ec 96...86 21 c0 f5...9e (428 bytes)

Proxy State Proxy State

19 / 26

Blast-RADIUS Attack Example (2/3)

4. MITM sends Access-Request with appended RejectGibberish to server.

01 1d 0047 726164617574...72 010674...3a 21 ec 96...86 21 c0 f5...9e

RejectGibberish

5. MITM intercepts Access-Reject, learning the Response Authenticator.

03 1d 01c0 6034d0ff16e4...30 21 ec 96...86 21 c0 f5...9e

Response Authenticator

6. MITM puts Response Authenticator in Access-Accept packet with appended
AcceptGibberish.

02 1d 01c0 6034d0ff16e4...30 21 ec 3d...86 21 c0 f5...9e

AcceptGibberish

20 / 26

Blast-RADIUS Attack Example (3/3)

7. Access-Accept and Access-Reject produce the same Response Authenticator, and,
hence, pass the RADIUS client authentication check.

6034d0ff16e4...30

= MD5(02 1d 01c0 726164617574...72 21 ec 3d...86 21 c0 f5...9e Shared Secret)
AcceptPrefix AcceptGibberish

= MD5(03 1d 01c0 726164617574...72 21 ec 96...86 21 c0 f5...9e Shared Secret)

Response Authenticator

RejectPrefix RejectGibberish

21 / 26

What about EAP-TLS?

• Extensible Authentication Protocol supports authentication modes beyond simple
password

• e.g., EAP-TLS and EAP-TTLS are two such modes

22 / 26

What about EAP-TLS?

• TLS does not wrap RADIUS: RADIUS wraps EAP wraps TLS
• Access-Accept packet is still sent over UDP!

• BUT, any packet with an EAP-Message requires a separate
Message-Authenticator attribute, which uses HMAC-MD5:

A RADIUS client receiving an Access-Accept, Access-Reject or Access-
Challenge with a Message-Authenticator attribute present MUST calculate the
correct value of the Message-Authenticator and silently discard the packet if it
does not match the value sent.

(RFC 3579)

23 / 26

What about EAP-TLS?

• TLS does not wrap RADIUS: RADIUS wraps EAP wraps TLS
• Access-Accept packet is still sent over UDP!
• BUT, any packet with an EAP-Message requires a separate
Message-Authenticator attribute, which uses HMAC-MD5:

A RADIUS client receiving an Access-Accept, Access-Reject or Access-
Challenge with a Message-Authenticator attribute present MUST calculate the
correct value of the Message-Authenticator and silently discard the packet if it
does not match the value sent.

(RFC 3579)

23 / 26

Impact

Affected modes:
• PAP, CHAP, MS-CHAP are vulnerable
• EAP modes likely not vulnerable (require Message-Authenticator)

Affected deployments: Requires MITM network access
• RADIUS/UDP traffic over open internet is vulnerable.
• RADIUS/UDP traffic over VLAN or IPSEC requires network access; useful for

lateral movement within org.

Timing:
• RADIUS client timeouts ≤ 1m, our PoCs take ≈ 5m.
• Optimizations feasible: parallelizes well, hardware implementation.

24 / 26

Impact

Affected modes:
• PAP, CHAP, MS-CHAP are vulnerable
• EAP modes likely not vulnerable (require Message-Authenticator)

Affected deployments: Requires MITM network access
• RADIUS/UDP traffic over open internet is vulnerable.
• RADIUS/UDP traffic over VLAN or IPSEC requires network access; useful for

lateral movement within org.

Timing:
• RADIUS client timeouts ≤ 1m, our PoCs take ≈ 5m.
• Optimizations feasible: parallelizes well, hardware implementation.

24 / 26

Impact

Affected modes:
• PAP, CHAP, MS-CHAP are vulnerable
• EAP modes likely not vulnerable (require Message-Authenticator)

Affected deployments: Requires MITM network access
• RADIUS/UDP traffic over open internet is vulnerable.
• RADIUS/UDP traffic over VLAN or IPSEC requires network access; useful for

lateral movement within org.

Timing:
• RADIUS client timeouts ≤ 1m, our PoCs take ≈ 5m.
• Optimizations feasible: parallelizes well, hardware implementation.

24 / 26

Mitigations

• Massive disclosure with 90+ vendors.
• Challenges: widespread, backwards compatibility.

Short-term:
• Message-Authenticator attribute uses HMAC-MD5 not

vulnerable to MD5 collisions.
• All requests and responses should include and verify

Message-Authenticator.

Long-term:
• Encapsulate all RADIUS traffic in (D)TLS tunnel.
• Current IETF draft is being standardized [RW24].

Some power plants use
RADIUS [TKSA14].

25 / 26

Mitigations

• Massive disclosure with 90+ vendors.
• Challenges: widespread, backwards compatibility.

Short-term:
• Message-Authenticator attribute uses HMAC-MD5 not

vulnerable to MD5 collisions.
• All requests and responses should include and verify

Message-Authenticator.

Long-term:
• Encapsulate all RADIUS traffic in (D)TLS tunnel.
• Current IETF draft is being standardized [RW24].

Some power plants use
RADIUS [TKSA14].

25 / 26

Mitigations

• Massive disclosure with 90+ vendors.
• Challenges: widespread, backwards compatibility.

Short-term:
• Message-Authenticator attribute uses HMAC-MD5 not

vulnerable to MD5 collisions.
• All requests and responses should include and verify

Message-Authenticator.

Long-term:
• Encapsulate all RADIUS traffic in (D)TLS tunnel.
• Current IETF draft is being standardized [RW24].

Some power plants use
RADIUS [TKSA14].

25 / 26

Blast-RADIUS attack

Attack summary: MD5 collision attack on
RADIUS authentication by MitM adversary.

https://blastradius.fail

RADIUS/UDP Considered Harmful
Sharon Goldberg, Miro Haller, Nadia Heninger, Mike Milano,
Dan Shumow, Marc Stevens, and Adam Suhl.
USENIX Security, August 2024.

26 / 26

https://blastradius.fail

References

1 / 6

References I

[dB94] Bert den Boer and Antoon Bosselaers. “Collisions for the Compression
Function of MD5”. In: EUROCRYPT’93. Ed. by Tor Helleseth. Vol. 765.
LNCS. Springer, Heidelberg, Germany, May 1994, pp. 293–304. DOI:
10.1007/3-540-48285-7_26.

[DeK24] Alan DeKok. RADIUS and MD5 Collision Attacks. https://
networkradius.com/assets/pdf/radius_and_md5_collisions.pdf.
2024.

[RW24] Jan-Frederik Rieckers and Stefan Winter. (Datagram) Transport Layer
Security ((D)TLS Encryption for RADIUS. Internet-Draft
draft-ietf-radext-radiusdtls-bis-02. Work in Progress. Internet Engineering
Task Force, July 2024. 38 pp. URL:
https://datatracker.ietf.org/doc/draft-ietf-radext-
radiusdtls-bis/02/.

2 / 6

https://doi.org/10.1007/3-540-48285-7_26
https://networkradius.com/assets/pdf/radius_and_md5_collisions.pdf
https://networkradius.com/assets/pdf/radius_and_md5_collisions.pdf
https://datatracker.ietf.org/doc/draft-ietf-radext-radiusdtls-bis/02/
https://datatracker.ietf.org/doc/draft-ietf-radext-radiusdtls-bis/02/

References II

[SLW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. “Chosen-Prefix
Collisions for MD5 and Colliding X.509 Certificates for Different Identities”.
In: EUROCRYPT. Vol. 4515. Lecture Notes in Computer Science. Springer,
2007, pp. 1–22.

[Ste+09] Marc Stevens et al. “Short Chosen-Prefix Collisions for MD5 and the
Creation of a Rogue CA Certificate”. In: CRYPTO. Vol. 5677. Lecture
Notes in Computer Science. Springer, 2009, pp. 55–69.

[TKSA14] Henrik Thejl, Nagaraja K S, and Karl-Georg Aspacher. “A method for user
management and a power plant control system thereof for a power plant
system”. Pat. 2765466. Siemens Gamesa Renewable Energy A/S. Jan. 24,
2014. URL: https://data.epo.org/publication-
server/rest/v1.0/publication-
dates/20190904/patents/EP2765466NWB1/document.pdf.

3 / 6

https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190904/patents/EP2765466NWB1/document.pdf
https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190904/patents/EP2765466NWB1/document.pdf
https://data.epo.org/publication-server/rest/v1.0/publication-dates/20190904/patents/EP2765466NWB1/document.pdf

References III

[WY05] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash
Functions”. In: EUROCRYPT. Vol. 3494. Lecture Notes in Computer
Science. Springer, 2005, pp. 19–35.

4 / 6

Backup Slides

5 / 6

Attack Extensions

• Adversary can add arbitrary attributes in prefix for Access-Accept.

AcceptPrefix = 02 1d 01c0 726164617574...72 1a0b000007db1d04

Attribute:
Exec-Privilege 04

• Proxy-State attributes are not the only way to inject the RejectGibberish.
• Any reflected user input could work, e.g. the User-Name or Vendor-Specific

attributes.
• In Access-Request:

User-Name: 0PZjN-_ayr83S-nc6q...Mt85
• In Access-Reject:

Reply-Message: Login for 0PZjN-_ayr83S-nc6q...Mt85 failed!
• The client does not need to support or parse these attributes.

6 / 6

	Appendix
	References
	References
	Backup Slides

