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Attack Summary

MitM network attacker can forge arbitrary RADIUS responses (for non-EAP
authentication modes)

e.g., can log into victim device with bogus credentials

This is a protocol vulnerability: RADIUS hard codes weak authentication based on
MD5
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What is RADIUS?

• RADIUS is the de facto standard lightweight protocol for authentication,
authorization, and accounting (AAA) for networked devices.

• Log into X but handle auth on server Y

User Device
(RADIUS Client)

Auth Server
(RADIUS Server)

Login

Username: ...

Password: ... RADIUS
Access Granted!
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What uses RADIUS?

RADIUS is in wide-spread use, and is supported by essentially every switch,
router, access point, and VPN concentrator product sold in the past twenty-
five years.

(Alan DeKok, lead developer of FreeRADIUS, [DeK24])

• Backbone routers
• VPNs
• ISP infrastructure (DSL/FTTH)
• IoT devices
• Identity Providers and MFA (Okta, Duo)
• Not vulnerable to this attack: 802.1X, enterprise WiFi, eduroam
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What uses RADIUS?

• Power grid equipment
• Industrial control systems
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RADIUS still uses 90s-era cryptography

• MD5 was broken 20 years ago
• But backward compatibility is hard
• Perceived lack of urgency to deprecate

As of the writing of this specification, RADIUS/UDP is still widely used, even
though it depends on MD5 and "ad hoc" constructions for security. While
MD5 has been broken, it is a testament to the design of RADIUS that there
have been (as yet) no attacks on RADIUS Authenticator signatures which are
stronger than brute-force.

(“Deprecating Insecure Practices in RADIUS” IETF draft, 2023)

..until now!
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How does RADIUS work?

User Device
(RADIUS Client)

Auth Server
(RADIUS Server)

Login

Username: ...

Password: ...

Access-Request

Username: ...

Password: ...

Access-Accept

Access-Reject

or

Access Granted!

• RADIUS requests and responses are often sent over UDP.
• Client and server share fixed shared secret for authenticating responses and

obfuscating passwords.
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Packet Formats

Access-Request = Request Header Request Nonce Attributes

4 bytes 16 random bytes User-Name test

Password Mjg2NzU1z

Access-Accept = Accept Header Response Authenticator Attributes

4 bytes 16 byte “MAC” Reply-Message Welcome test!

Exec-Privilege 4

Access-Reject = Reject Header Response Authenticator Attributes

4 bytes 16 byte “MAC” Reply-Message Access denied

8 / 26



Response Authenticator

Goal: Prevent forgery of packets, e.g., by machine-in-the-middle attacker.

The Response Authenticator from packet

Response Header Response Authenticator Attributes

is computed as

MD5 ( Response Header Request Nonce Attributes Shared Secret ).

copied from request

copied from response

fixed, pre-configured
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Is this a secure MAC?

MACS(M) = MD5(M∥S)

No!

Find collision MD5(M1) = MD5(M2), then

MD5(M1∥S) = MD5(M2∥S).

Side note: what about
• MACS(M) = MD5(S∥M)? No (length extension)
• MACS(M) = MD5(S∥M∥S)? Yes?* (sandwich/envelope MAC)

*assuming proper padding
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Blast-RADIUS: Turning Access-Reject Into Access-Accept

• MitM attacker wants to forge an Access-Accept
• Don’t know shared secret, so can’t compute Response Authenticator

• Attack: create an MD5 collision such that Access-Accept and Access-Reject will
produce the same Response Authenticator (simplified):

MD5(Access-Accept) = MD5(Access-Reject)

implies

MD5(Access-Accept || Secret) = MD5(Access-Reject || Secret).

• Trick server into sending the Access-Reject
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Blast-RADIUS Attack Overview

Attacker Victim Device MitM Auth Server

login
password bogus

Request Request′

RejectAccept

copy Response-Authenticator

Access Granted!

Compute collision: Accept Reject
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MD5 Collision Attack History
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• MD5 collision: unstructured strings G1, G2 with MD5(G1) = MD5(G2).
• Chosen-prefix collision: given prefixes P1, P2, produces G1, G2 such that:

MD5(P1||G1) = MD5(P2||G2)

• Appending any common suffix S still collides:

MD5(P1||G1||S) = MD5(P2||G2||S)
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MD5 Collision for RADIUS Response Authenticator
Given prefixes P1, P2, generated collision gibberish G1, G2, and suffix S :

MD5(P1||G1||S) = MD5(P2||G2||S)

Applied to RADIUS:

Response Authenticator

= MD5( Accept Header Request Nonce Accept Attributes Accept Gibberish Secret )

= MD5( Reject Header Request Nonce Reject Attributes Reject Gibberish Secret )
predicted prefixes P1, P2 gibberish G1, G2 suffix S

(unknown)
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Challenge 1: Online Collision Computation

Access-Request = Request Header Request Nonce Attributes

Reject HeaderReject Prefix = Request Nonce

• Prefixes require knowing the Request Nonce.

• Collision must be computed before RADIUS client times out.

• Collision time depends on collision length and type:

• MD5(G1) = MD5(G2) and MD5(P||G1) = MD5(P||G2) takes seconds.

• Chosen-prefix collision of [Ste+09]: 204-byte G1 and G2 in 28h on 215 PS3.

• We optimized our 428-byte collision from days to ≤ 5m on 47 servers.
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Challenge 2: RejectGibberish Injection

• Server needs to include Reject Gibberish in Response Authenticator:

MD5( Reject Header Request Nonce Reject Attributes Reject Gibberish Secret )
How do we get it to include Reject Gibberish in its Access-Reject?

• The Proxy-State attribute:
This Attribute is available to be sent by a proxy server to another server when forward-
ing an Access-Request and MUST be returned unmodified in the Access-Accept,
Access-Reject or Access-Challenge.

(RFC 2058, emphasis added)

Access-Request =
Request Header Request Nonce Attributes Proxy-State Header Reject Gibberish
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Aside: MD5 Collision Internals ([SLW07])

Track “Intermediate Hash Value” IHV (4 words)
dIHV = difference in IHV between pair of messages.
dIHV = 0 means collision.
Phase 1: Birthday
Find gibberish blocks G (0)

1 , G (0)
2 that put dIHV into a nice subspace

Phase 2: Near-collision
Repeatedly find gibberish blocks G (i+1)

1 , G (i+1)
2 that keep dIHV in the subspace and

reduce its hamming weight
Eventually dIHV = 0

Tradeoff: number of near-collision blocks vs difficulty of finding each near-collision block
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Challenge 3: Gibberish Length

Maximum length of Proxy-State is 253 bytes.
Gibberish that short would take too long to compute (we want ≈ 400 bytes)

Solution: Embed extra Proxy-State header(s) inside gibberish

Reject Gibberish = Gibberish Header Gibberish

Proxy State 1 Proxy State 2
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Blast-RADIUS Attack Example (1/3)
1. Attacker triggers Access-Request.
2. MITM attacker observes Access-Request.

01 1d 0047 726164617574...72 010674...3a

Request Nonce

3. MITM attacker predicts the following prefixes

AcceptPrefix = 02 1d 01c0 726164617574...72

RejectPrefix = 03 1d 01c0 726164617574...72

to compute the MD5 chosen-prefix collision gibberish.

AcceptGibberish = 21 ec 3d...86 21 c0 f5...9e (428 bytes)

RejectGibberish = 21 ec 96...86 21 c0 f5...9e (428 bytes)

Proxy State Proxy State
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Blast-RADIUS Attack Example (2/3)

4. MITM sends Access-Request with appended RejectGibberish to server.

01 1d 0047 726164617574...72 010674...3a 21 ec 96...86 21 c0 f5...9e

RejectGibberish

5. MITM intercepts Access-Reject, learning the Response Authenticator.

03 1d 01c0 6034d0ff16e4...30 21 ec 96...86 21 c0 f5...9e

Response Authenticator

6. MITM puts Response Authenticator in Access-Accept packet with appended
AcceptGibberish.

02 1d 01c0 6034d0ff16e4...30 21 ec 3d...86 21 c0 f5...9e

AcceptGibberish
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Blast-RADIUS Attack Example (3/3)

7. Access-Accept and Access-Reject produce the same Response Authenticator, and,
hence, pass the RADIUS client authentication check.

6034d0ff16e4...30

= MD5( 02 1d 01c0 726164617574...72 21 ec 3d...86 21 c0 f5...9e Shared Secret )
AcceptPrefix AcceptGibberish

= MD5( 03 1d 01c0 726164617574...72 21 ec 96...86 21 c0 f5...9e Shared Secret )

Response Authenticator

RejectPrefix RejectGibberish
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What about EAP-TLS?

• Extensible Authentication Protocol supports authentication modes beyond simple
password

• e.g., EAP-TLS and EAP-TTLS are two such modes

22 / 26



What about EAP-TLS?

• TLS does not wrap RADIUS: RADIUS wraps EAP wraps TLS
• Access-Accept packet is still sent over UDP!

• BUT, any packet with an EAP-Message requires a separate
Message-Authenticator attribute, which uses HMAC-MD5:

A RADIUS client receiving an Access-Accept, Access-Reject or Access-
Challenge with a Message-Authenticator attribute present MUST calculate the
correct value of the Message-Authenticator and silently discard the packet if it
does not match the value sent.

(RFC 3579)
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Impact

Affected modes:
• PAP, CHAP, MS-CHAP are vulnerable
• EAP modes likely not vulnerable (require Message-Authenticator)

Affected deployments: Requires MITM network access
• RADIUS/UDP traffic over open internet is vulnerable.
• RADIUS/UDP traffic over VLAN or IPSEC requires network access; useful for

lateral movement within org.

Timing:
• RADIUS client timeouts ≤ 1m, our PoCs take ≈ 5m.
• Optimizations feasible: parallelizes well, hardware implementation.
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Mitigations

• Massive disclosure with 90+ vendors.
• Challenges: widespread, backwards compatibility.

Short-term:
• Message-Authenticator attribute uses HMAC-MD5 not

vulnerable to MD5 collisions.
• All requests and responses should include and verify

Message-Authenticator.

Long-term:
• Encapsulate all RADIUS traffic in (D)TLS tunnel.
• Current IETF draft is being standardized [RW24].

Some power plants use
RADIUS [TKSA14].
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Blast-RADIUS attack

Attack summary: MD5 collision attack on
RADIUS authentication by MitM adversary.

https://blastradius.fail

RADIUS/UDP Considered Harmful
Sharon Goldberg, Miro Haller, Nadia Heninger, Mike Milano,
Dan Shumow, Marc Stevens, and Adam Suhl.
USENIX Security, August 2024.
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Attack Extensions

• Adversary can add arbitrary attributes in prefix for Access-Accept.

AcceptPrefix = 02 1d 01c0 726164617574...72 1a0b000007db1d04

Attribute:
Exec-Privilege 04

• Proxy-State attributes are not the only way to inject the RejectGibberish.
• Any reflected user input could work, e.g. the User-Name or Vendor-Specific

attributes.
• In Access-Request:

User-Name: 0PZjN-_ayr83S-nc6q...Mt85
• In Access-Reject:

Reply-Message: Login for 0PZjN-_ayr83S-nc6q...Mt85 failed!
• The client does not need to support or parse these attributes.
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