
How cryptography relates to Internet censorship

circumvention

David Fifield <david@bamsoftware.com>

Workshop on Attacks in Cryptography 7

2024-08-18

https://www.bamsoftware.com/talks/wac7-fep/

mailto:david@bamsoftware.com
mailto:david@bamsoftware.com
https://www.bamsoftware.com/talks/wac7-fep/
https://www.bamsoftware.com/talks/wac7-fep/

1. Show some neat, but little-known, crypto-related attacks on significant

protocols.

2. Talk about Fully Encrypted Protocols (FEPs).

3. Introduce censorship threat models to the cryptography-minded.

"Comments on certain past cryptographic flaws affecting fully encrypted censorship circumvention

protocols" (2023)

David Fifield

https://eprint.iacr.org/2023/1362

https://eprint.iacr.org/2023/1362
https://eprint.iacr.org/2023/1362

Censorship and circumvention

client

dest

censor

A simple but fairly general model of Internet censorship.

The censor derives utility from permitting some forms of network access. ("Block

everything" is not a profitable strategy.)

Circumvention tools work by making what the censor wants to allow, and what the

censor wants to block, difficult to tell apart—by obfuscating the censor's decision

boundary such that underblocking is more appealing than overblocking.

A censor may be understood as a combination of detection and blocking

components.

Detection Blocking

• Destination IP addresses

• TLS SNI (Server Name Indication)

• Contents of DNS queries

• Signatures of proxy protocols

• Plaintext keywords

• …

• IP null routing

• TCP RST injection

• DNS response injection

• HTTP redirect injection

• Packet dropping

• …

Generally, circumvention tools use some kind of encrypted proxy: encryption to hide

the content of communication, and a proxy to hide its endpoint.

Fully Encrypted Protocols (FEPs)

Every byte in a connection appears independently and uniformly random.

"Security notions for fully encrypted protocols" (2023)

Ellis Fenske, Aaron Johnson

https://www.petsymposium.org/foci/2023/foci-2023-0004.php

https://github.com/net4people/bbs/issues/383

"Bytes to Schlep? Use a FEP: Hiding Protocol Metadata with Fully Encrypted Protocols" (2024)

Ellis Fenske, Aaron Johnson

https://arxiv.org/abs/2405.13310

"Obfuscated Key Exchange" (2024)

Felix Günther, Douglas Stebila, Shannon Veitch

https://eprint.iacr.org/2024/1086

https://www.petsymposium.org/foci/2023/foci-2023-0004.php
https://www.petsymposium.org/foci/2023/foci-2023-0004.php
https://github.com/net4people/bbs/issues/383
https://github.com/net4people/bbs/issues/383
https://arxiv.org/abs/2405.13310
https://arxiv.org/abs/2405.13310
https://eprint.iacr.org/2024/1086
https://eprint.iacr.org/2024/1086

Protocol bytes mapped to grayscale pixels.

FEP-like protocols have a long history in

circumvention

Shadowsocks "stream ciphers" → Shadowsocks "AEAD ciphers"

Obfuscated OpenSSH (2009) → obfs2 (2012) → obfs3 (2013) → ScrambleSuit (2014)

→ obfs4 (2014)

VMess

https://shadowsocks.org/doc/stream.html
https://shadowsocks.org/doc/stream.html
https://shadowsocks.org/doc/aead.html
https://shadowsocks.org/doc/aead.html
https://github.com/brl/obfuscated-openssh
https://github.com/brl/obfuscated-openssh
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race/
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race/
https://blog.torproject.org/tor-browser-36-released
https://blog.torproject.org/tor-browser-36-released
https://censorbib.nymity.ch/#Winter2013b
https://censorbib.nymity.ch/#Winter2013b
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt
https://github.com/v2fly/v2fly-github-io/blob/90cfaec7ee5e62fae5cc8351be7da7da82b3ed4e/docs/en_US/developer/protocols/vmess.md
https://github.com/v2fly/v2fly-github-io/blob/90cfaec7ee5e62fae5cc8351be7da7da82b3ed4e/docs/en_US/developer/protocols/vmess.md

Shadowsocks stream ciphers decryption oracle

"Redirect attack on Shadowsocks stream ciphers"

Zhiniang Peng

https://github.com/edwardz246003/shadowsocks

https://github.com/net4people/bbs/issues/24

Stream ciphers are completely broken and will be removed soon.

New users must use AEAD ciphers.

This historic document is for educational purposes only.

https://shadowsocks.org/doc/stream.html

https://github.com/edwardz246003/shadowsocks
https://github.com/edwardz246003/shadowsocks
https://github.com/net4people/bbs/issues/24
https://github.com/net4people/bbs/issues/24
https://shadowsocks.org/doc/stream.html
https://shadowsocks.org/doc/stream.html

Client and server have a preshared symmetric key. The same key is used for

encryption in both directions and across connections. Only the IV changes in

different connections.

client→server IV 1 IPv4 port data…

server→client IV data…

The server receives and starts decrypting the client's stream, checks for the magic

byte 1, tries to make a TCP connection to the specified target at IPv4:port, then

forwards the decryption of the rest of the stream.

The server encrypts any downstream data received from the server and sends it

back to the client.

Idea: take a recorded server→client stream and replay it as a client→server stream.

The Shadowsocks server will interpret the first 7 bytes as a (addrtype, IPv4, port)

target specification, decrypt the rest of the stream, and send it to that target.

This gives an attacker awkward oracle access to the server's secret key.

An attacker who can guess the first 7 bytes of plaintext (e.g. "HTTP/1.") can XOR

its own IP address into the target specification and have the plaintext sent to a

destination of its choosing.

Replay a recorded server→client stream to the server. (IV omitted here.)

7c20f534e986dbce37f555c6760ea24faa928f76

The server logs:

unsupported addrtype 72, maybe wrong password or encryption

method

7c20f534e986dbce37f555c6760ea24faa928f76

⊕485454502f312e ("HTTP/1.")

⊕01cb0071051f40 (203.0.113.5:8000)

35bfa115c3a8b5ce37f555c6760ea24faa928f76

"Why care about chosen ciphertext attacks? Won't it just decrypt to gibberish?"

"How would an attacker get access to a decryption oracle anyway?"

obfs4 and Elligator

obfs4

• Forward secrecy (X25519 handshake)

• Server authentication

• Integrity protection

• Probe resistance

Elligator

Represents public curve points (ephemeral public keys for Diffie–Hellman) as

uniform random byte string "representatives".

Circumvention protocols used to access Tor. (Tor Metrics.)

https://metrics.torproject.org/userstats-bridge-transport.html?start=2024-05-20&end=2024-08-18&transport=obfs4&transport=meek&transport=snowflake&transport=%3C%3F%3F%3E&transport=%3COR%3E
https://metrics.torproject.org/userstats-bridge-transport.html?start=2024-05-20&end=2024-08-18&transport=obfs4&transport=meek&transport=snowflake&transport=%3C%3F%3F%3E&transport=%3COR%3E
https://metrics.torproject.org/userstats-bridge-transport.html?start=2024-05-20&end=2024-08-18&transport=obfs4&transport=meek&transport=snowflake&transport=%3C%3F%3F%3E&transport=%3COR%3E
https://metrics.torproject.org/userstats-bridge-transport.html?start=2024-05-20&end=2024-08-18&transport=obfs4&transport=meek&transport=snowflake&transport=%3C%3F%3F%3E&transport=%3COR%3E

obfs4 begins with an elliptic curve Diffie–Hellman key exchange. Client and server

exchange ephemeral public keys from which a shared session key is derived.

Public keys are sent as Elligator representatives, so they look as random as the rest

of the protocol.

1. Non-canonical public key representatives

2. Most significant bit always zero

3. Only points from the large prime-order subgroup

Non-canonical representatives

The final step of the Elligator inverse map is to take a square root in GF(q), where

q =2255 − 19.

The square root is supposed to produce only non-negative outputs (e.g., field

elements in [0, (q − 1)/2]).

The implementation of Elligator used at the time did not use canonical square

roots, and instead systematically produced either a positive or negative square

root for a given input. (In other words, bit 254 was not independent of the lower

bits.)

"Implementing Elligator for Curve25519" (2013)

Adam Langley

https://www.imperialviolet.org/2013/12/25/elligator.html

https://www.imperialviolet.org/2013/12/25/elligator.html
https://www.imperialviolet.org/2013/12/25/elligator.html

The attack: observe a possible public key representative at the beginning of a

suspected obfs4 connection.

Interpret the bytes as a field element, square it, and take the square root using the

same non-canonical square root algorithm.

The output will match the input only 50% of the time for random byte strings, but

100% of the time for the non-canonical representatives.

"Incorrect (non canonical) representative output for ScalarBaseMult()" (2020)

Loup Vaillant

https://github.com/agl/ed25519/issues/27

https://github.com/agl/ed25519/issues/27
https://github.com/agl/ed25519/issues/27

Most significant bit always zero

Elligator outputs 254-bit representatives (when the canonical square root is used).

But programming interfaces are more naturally expressed using bytes, not bits.

Unclear API boundaries meant that nothing was randomizing the remaining 2 bits

of the byte[32].

$ perl -an -e '/^obfs4 (\S*) (?:\S+) cert=(\S+)/ && \

print "$1 $2\n";' bridges.txt | while read addr cert; do \

./obfs4-bug-check $addr $cert; done

.................... 185.31.174.60:443 FAIL 0/20

.................... 142.132.237.143:2538 FAIL 0/20

1.111...1...1..11..1 90.127.32.238:42024 PASS 9/20

https://bugs.torproject.org/tpo/anti-censorship/team/91

https://bugs.torproject.org/tpo/anti-censorship/team/91
https://bugs.torproject.org/tpo/anti-censorship/team/91

Only points from the large prime-order subgroup

Curve25519 has order 8p for a large prime p. To avoid small-subgroup attacks, the

base point of X25519 generates the subgroup of order p. Also, private key scalars

are "clamped" to be multiples of 8.

But Elligator representatives must not always represent points on the order-p

subgroup, because random byte strings do not have that property.

The passive attack is to observe a suspected obfs4 handshake, map the public key

representative to an elliptic curve point, multiply by p, and check for the result

always being the identity element.

https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird

/40007

https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/40007
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/40007
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/40007
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/40007

If you're doing any implementation with Elligator, your first stop should be

https://elligator.org/.

https://elligator.org/
https://elligator.org/

The effect of these attacks

Shadowsocks stream ciphers are dead (one hopes), but Shadowsocks is otherwise

still going strong.

obfs4 implementations were patched and obfs4 continues to be a workhorse in Tor

and elsewhere. There's no evidence of any of these passive obfs4 distinguishability

attacks having been used in practice.

Fully encrypted protocols remain probably the most important single class of

circumvention protocols.

"How the Great Firewall of China Detects and Blocks Fully Encrypted Traffic" (2023)

Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson, Xiaokang Wang, Kevin

Bock, Amir Houmansadr, Dave Levin, Eric Wustrow

https://gfw.report/publications/usenixsecurity23/en/

https://gfw.report/publications/usenixsecurity23/en/
https://gfw.report/publications/usenixsecurity23/en/

Why?

In circumvention, the crypto is usually not the weak link. Available evidence

indicates that censors prefer to attack circumvention systems in other ways, when

possible.

Censors are not just classifiers—they also bear asymmetric costs for

misclassifications.

Classification advantage is asymmetric: censors are highly sensitive to false

positives. A classifier FPR of 0.1% spells a successful circumvention protocol.

Corollary: censors almost universally prefer allow-by-default rather than deny-by-

default, fail open rather than fail closed.

Censors, empirically, dislike employing probabilistic or stateful attacks like the

obfs4 passive distinguishers.

Shadowsocks, for its shortcomings, is easy to specify and easy to implement, and

for those reasons has huge support and momentum.

…worse-is-better has better survival characteristics than the-right-

thing…

https://dreamsongs.com/RiseOfWorseIsBetter.html

Circumvention technology stands to benefit from better cryptography, but we

must still have due respect for the other factors that matter.

https://dreamsongs.com/RiseOfWorseIsBetter.html
https://dreamsongs.com/RiseOfWorseIsBetter.html

机场
jīchǎng

"Airports" are paid Shadowsocks/etc. hosting services that are common and

commonly used in China.

Shadowsocks logo.

Why doesn't a simple TLS connection to a proxy suffice?

• TLS fingerprinting

• Active probing

• But the big one is: how do you prevent the censor from discovering the IP

addresses of your proxies and simply blocking them by IP address?

In practice, the biggest challenge is not protocol obfuscation but endpoint blocking:

the "bridge distribution problem".

"Lox: Protecting the Social Graph in Bridge Distribution" (2023)

Lindsey Tulloch, Ian Goldberg

https://censorbib.nymity.ch/#Tulloch2023a

https://github.com/net4people/bbs/issues/320

https://censorbib.nymity.ch/#Tulloch2023a
https://censorbib.nymity.ch/#Tulloch2023a
https://github.com/net4people/bbs/issues/320
https://github.com/net4people/bbs/issues/320

David Fifield <david@bamsoftware.com>

The censorship and circumvention forum I manage: https://github.com

/net4people/bbs

mailto:david@bamsoftware.com
mailto:david@bamsoftware.com
https://github.com/net4people/bbs
https://github.com/net4people/bbs
https://github.com/net4people/bbs
https://github.com/net4people/bbs

