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This talk: 
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A Constant-Time Code Example

Apple DMP could treat loaded 
data as memory address and 
perform access. 
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Augury1

1 Vicarte, et al., "Augury: Using data memory-dependent prefetchers to leak data at rest”, SP’22.

• Comprehensive reverse engineering 
of Apple DMPs.

• Develop DMP-aided chosen-
input attack framework.

• Undermine four cryptographic 
implementations in the wild or 
submitted to NIST PQC 
standardization.

This Work
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How do classical prefetchers 
work?

arr[0] arr[1] arr[2] arr[N-1]… arr[N] arr[M-1]…

Training Prefetching

// stride pattern
for (i = 0; i < M; i++)

trash += arr[i];

stride 
prefetcher

The program reads arr[0], 
arr[1], …
The stride is 1! Prefetch 
arr[N], arr[N+1],…
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What is the finding of prior 
work, Augury?

arr[0] arr[1] arr[2] arr[N-1]… arr[N]

* * * * *

arr[M-1]

*

…

Training Prefetching

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];

Augury

DMP recognizes and 
prefetches Array-of-
pointers access pattern!

Dereferenced by code

Dereferenced by DMP
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Does memory access pattern 
even matter?

GoFetch

Really? Is it 
necessary?

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];
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Does memory access pattern 
even matter?

arr[0]

*
GoFetch

Load

arr[1] arr[2] arr[7]…

* * *

Cache Line Aligned

Really? Is it 
necessary?

// Single load
trash += arr[0];

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];

Dereferenced by DMP
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Where does the DMP scan 
for pointers?

arr[0] arr[1] arr[2] arr[7]…

* * * *

Load L1 Fills

Cache Line Aligned

// Single load
trash += arr[0];

Dereferenced by DMP
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How does DMP determine 
pointers to dereference in 
each line?

arr[0] arr[1] arr[2] arr[7]…

* * * *

Load L1 Fills

Cache Line Aligned

Dereferenced by DMP
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History filter: how DMP 
avoids redundant 
dereference?

…

Do-not-scan hint: how DMP 
avoids redundant scan?

4GByte region: heuristic 
of predicting pointer 
value.

Top byte ignore: how 
DMP synergizes with 
TBI?

…

Check out the paper!
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How to use DMP to break CT Crypto?
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How to use DMP to break CT Crypto?

sec

ci
cstate

ptr if sec=A

No ptr if sec=B 

ci: chosen input sec: secret

cstate: crypto state



43

How to use DMP to break CT Crypto?

sec

ci
cstate

ci: chosen input sec: secret

cstate = ci AND sec

0xffffffffffffffff
0x0000000000000000

sec

cstate: crypto state



44

How to use DMP to break CT Crypto?

Choose ci as valid pointer!
cstate = ptr AND sec

if sec = 0xffffffffffffffff
=> cstate = ptr

if sec = 0x0000000000000000
=> cstate = 0

sec
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0xffffffffffffffff
0x0000000000000000

sec

cstate: crypto state
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How to use DMP to break CT Crypto?

DMP *ptr

DMP

sec

ci
cstate

Choose ci as valid pointer!
cstate = ptr AND sec

if sec = 0xffffffffffffffff
=> cstate = ptr

if sec = 0x0000000000000000
=> cstate = 0

ci: chosen input sec: secret

cstate = ci AND sec

0xffffffffffffffff
0x0000000000000000

sec

cstate: crypto state
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End-to-end key
extraction PoCs

Classical

Crypto

Post-Quantum

Crypto

Digital 
Signature

Key 
Exchange

OpenSSL 
DHKE

Go RSA

ML-DSA ML-KEM
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𝑁 = 𝑝 × 𝑞
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𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁

𝑁 = 𝑝 × 𝑞

RSA Decryption

Go RSA
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𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁
𝑐𝐷𝑝 𝑚𝑜𝑑 𝑝

𝑐𝐷𝑞 𝑚𝑜𝑑 𝑞

CRT OptimizationRSA Decryption

Go RSA

𝑁 = 𝑝 × 𝑞
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𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁

RSA Decryption

𝑐𝐷𝑝 𝑚𝑜𝑑 𝑝

𝑐𝐷𝑞 𝑚𝑜𝑑 𝑞

CRT Optimization

𝑐 𝑚𝑜𝑑 𝑝

Observations of crypto state 𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input and 𝑝 is secret.

• If 𝑐 < 𝑝, then 𝑐 𝑚𝑜𝑑 𝑝 = 𝑐, else 𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝.

First Step

Go RSA

𝑁 = 𝑝 × 𝑞
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Observation of 
𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input 
and 𝑝 is victim’s 
secret.

• if 𝑐 < 𝑝,  
𝑐 𝑚𝑜𝑑 𝑝 = 𝑐

• if 𝑐 ≥ 𝑝,

𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝

𝑝

𝑐 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏0000… ∥ 𝒑𝒕𝒓

𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝒙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥

Target i-th bit of 𝑝 and 
set input as 𝑐 = 𝑝𝑟𝑒𝑓𝑖𝑥 ∥ 10000… ∥ 𝑝𝑡𝑟 !

Go RSA

i-th bit
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Observation of 
𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input 
and 𝑝 is victim’s 
secret.

• if 𝑐 < 𝑝,  
𝑐 𝑚𝑜𝑑 𝑝 = 𝑐

• if 𝑐 ≥ 𝑝,

𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝

𝑝

𝑐 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏0000… ∥ 𝒑𝒕𝒓

𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝒙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥

Target i-th bit of 𝑝 and 
set input as 𝑐 = 𝑝𝑟𝑒𝑓𝑖𝑥 ∥ 10000… ∥ 𝑝𝑡𝑟 !

Go RSA

i-th bit

• if 𝑝 = 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥 𝑝 > 𝑐

• then 𝑐 𝑚𝑜𝑑 𝑝 = 𝑐 = ⋯ ∥ 𝒑𝒕𝒓

• if 𝑝 = 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥.          𝑝 < 𝑐

• then 𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝 = 𝒖𝒏𝒌𝒏𝒐𝒘𝒏
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DMP recovers upper 560 bits
+ Coppersmith2

= full extraction!

2 Coppersmith, ”Finding a small root of a bivariate integer equation; factoring with high bits known”, EUROCRYPT’96.

Observation of 
𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input 
and 𝑝 is victim’s 
secret.

• if 𝑐 < 𝑝,  
𝑐 𝑚𝑜𝑑 𝑝 = 𝑐

• if 𝑐 ≥ 𝑝,

𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝

𝑝

𝑐 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏0000… ∥ 𝒑𝒕𝒓

𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝒙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥

Target i-th bit of 𝑝 and 
set input as 𝑐 = 𝑝𝑟𝑒𝑓𝑖𝑥 ∥ 10000… ∥ 𝑝𝑡𝑟 !

Go RSA

i-th bit
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• CCA-KEM built on a CPA-PKE scheme.
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• CCA-KEM built on a CPA-PKE scheme.

Key Mismatch Attack3

3 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.
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Key Mismatch Attack3
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653 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…𝑚

𝟎~𝒒 𝟎~𝒒 𝟎~𝒒…𝑒

Kyber-512: 𝒒 = 𝟑𝟑𝟐𝟗

chosen
inputs

𝑚′ = 𝐷𝑒𝑐(𝑐, 𝑠𝑘)

secret
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663 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒) 𝑚′ = 𝐷𝑒𝑐(𝑐, 𝑠𝑘)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…

𝟎~𝒒 𝟎~𝒒 𝟎~𝒒…

𝑚

𝑒

Kyber-512: 𝒒 = 𝟑𝟑𝟐𝟗

chosen
inputs

𝑚′ = 𝑚

secret

(𝑠𝑘∗, 𝑒∗) 𝑚′ ≠ 𝑚
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𝑚′ 𝑖 = 𝑚 𝑖𝑠𝑘 𝑖 <
𝑞

4
− 𝑒[𝑖]

𝑚′ 𝑖 ≠ 𝑚 𝑖𝑠𝑘 𝑖 ≥
𝑞

4
− 𝑒[𝑖]

Key Mismatch Attack3

3 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.
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Kyber PKE

𝑚′?= 𝑚

Kyber

FO

Observations of 
decrypted message 
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and 
𝑒 are chosen 
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .
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Kyber PKE

𝑚′?= 𝑚

Kyber

FO DMP

Observations of 
decrypted message 
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and 
𝑒 are chosen 
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .
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Set 𝑚 as 𝑝𝑡𝑟 ∥ 0…0 and tweak 𝑒[0]!

• if 𝑒 + 𝑠𝑘 𝟎 <
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓||0…0

• if 𝑒 + 𝑠𝑘 𝟎 ≥
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓′||0…0

𝒑𝒕𝒓

No 𝒑𝒕𝒓

Observations of 
decrypted message 
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and 
𝑒 are chosen 
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .
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Set 𝑚 as 𝑝𝑡𝑟 ∥ 0…0 and tweak 𝑒[0]!

3 May et al., ”Too Many Hints – When LLL Breaks LWE”, ASIACRYPT’23.

DMP recovers 392 indexes

+ Lattice Reduction3

= full extraction!

• if 𝑒 + 𝑠𝑘 𝟎 <
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓||0…0

• if 𝑒 + 𝑠𝑘 𝟎 ≥
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓′||0…0

𝒑𝒕𝒓

No 𝒑𝒕𝒓

Kyber-512:

Observations of 
decrypted message 
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and 
𝑒 are chosen 
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .
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• Apple: Disable DMP with DIT=1
• Only works on M3.

• Go: Propose an opt-in DIT mode 
in Go binary.

• Asahi Linux: Found chicken bit 
to disable DMP on M1/M2.

Impact

• Pwine Awards: Best Cryptographic 
Attack winner.
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gofetch.fail

Check our Website:

boruc2@illinois.edu

• Data memory-dependent 
prefetchers (DMPs) performs 
secret-dependent memory access 
to leak data.

• Exploiting DMPs to perform key 
extraction attacks to constant-time 
cryptography is feasible.

https://gofetch.fail/

