
GoFetch:
Breaking Constant-Time Cryptographic
Implementations Using
Data Memory-Dependent Prefetchers

Boru Chen, Yingchen Wang, Pradyumna Shome,

Christopher Fletcher, David Kohlbrenner, Riccardo Paccagnella,

Daniel Genkin

1

Timing Attacks

2

Timing Attacks

3

Core

Cache

DRAM

Timing Attacks

4

// secret = 1 or 0
if (secret)
{
trash = *addr_A

}

Core

Cache

DRAM

Timing Attacks

5

// secret = 1 or 0
if (secret)
{
trash = *addr_A

}

Core

Cache

DRAM

Flush
Cache

Load
addr_A

Timing Attacks

6

Core

Cache

DRAM
Cache

// secret = 1 or 0
if (secret)
{
trash = *addr_A

}

Flush
Cache

Load
addr_A

Timing Attacks

7

Core

Cache

DRAM

secret = 1

Cache

// secret = 1 or 0
if (secret)
{
trash = *addr_A

}

Flush
Cache

Load
addr_A

A

Timing Attacks

8

Core

Cache

DRAM

A

Cache

secret = 1

// secret = 1 or 0
if (secret)
{
trash = *addr_A

}

Flush
Cache

Load
addr_A

Timing Attacks

9

Core

Cache

DRAM

secret = 0

A

ACache

secret = 1

// secret = 1 or 0
if (secret)
{
trash = *addr_A

}

Flush
Cache

Load
addr_A

10

Constant-Time Programming

Code

CT Programming

Timing Attacks

11

Constant-Time Programming

Code

CT Programming

Timing Attacks

secret

Independent

time

12

Constant-Time Programming

Code

CT Programming

Timing Attacks

if (secret)
{

...
}

Control-Flow

trash = *secret

Memory Address

secret / 100.0

Time-Variable

secret

Independent

time

13

Constant-Time Programming

Code

CT Programming

Timing Attacks

if (secret)
{

...
}

Control-Flow

trash = *secret

Memory Address

secret / 100.0

Time-Variable

CT Cryptographic
Implementation

secret

Independent

time

14

This talk:
Show that these principles are insufficient.

Constant-Time Programming

15

This talk:
Show that these principles are insufficient.

Constant-Time Programming

Data Memory
Dependent Prefetcher

16

secret = *non-sec-addr
secret = *non-sec-addr
secret = *non-sec-addr
secret = *non-sec-addr

This talk:
Show that these principles are insufficient.

Constant-Time Programming

Data Memory
Dependent Prefetcher

program without
secret-dependent load

17

This talk:
Show that these principles are insufficient.

Constant-Time Programming

Data Memory
Dependent Prefetcher

*secret

*secret

secret = *non-sec-addr
secret = *non-sec-addr
secret = *non-sec-addr
secret = *non-sec-addr

program without
secret-dependent load

18

This talk:
Show that these principles are insufficient.

Constant-Time Programming

Data Memory
Dependent Prefetcher

Cache Timing
Attacks

*secret

*secret

secret = *non-sec-addr
secret = *non-sec-addr
secret = *non-sec-addr
secret = *non-sec-addr

program without
secret-dependent load

19

A Constant-Time Code Example

Apple DMP could treat loaded
data as memory address and
perform access.

20

A Constant-Time Code Example

Apple DMP could treat loaded
data as memory address and
perform access.

A

B

program load

DMP load …

21

A Constant-Time Code Example

Core

Shared Cache

Apple DMP could treat loaded
data as memory address and
perform access.

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

22

A Constant-Time Code Example

Core

Shared Cache

Apple DMP could treat loaded
data as memory address and
perform access.

*non-sec-addr

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

23

A Constant-Time Code Example

Core

Shared Cache

Apple DMP could treat loaded
data as memory address and
perform access.

*non-sec-addr Core

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

24

A Constant-Time Code Example

Core

Shared Cache

DMP

*secret

secret

Apple DMP could treat loaded
data as memory address and
perform access.

Core

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

25

A Constant-Time Code Example

Core

Shared Cache

DMP

*ptr1

secret

secret = ptr1

Apple DMP could treat loaded
data as memory address and
perform access.

Core

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

26

A Constant-Time Code Example

Core

Shared Cache

DMP

*ptr2

secret
secret = ptr2

Apple DMP could treat loaded
data as memory address and
perform access.

Core

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

27

A Constant-Time Code Example

Core

Shared Cache

DMP

*secret

secret

ptr1 ptr2

Core

Apple DMP could treat loaded
data as memory address and
perform access.

// secret = ptr1 or ptr2
secret = *non-sec-addr

A

B

program load

DMP load …

Contribution

281 Vicarte, et al., "Augury: Using data memory-dependent prefetchers to leak data at rest”, SP’22.

Augury1

Contribution

291 Vicarte, et al., "Augury: Using data memory-dependent prefetchers to leak data at rest”, SP’22.

• Comprehensive reverse engineering
of Apple DMPs. Augury1

This Work

Contribution

301 Vicarte, et al., "Augury: Using data memory-dependent prefetchers to leak data at rest”, SP’22.

• Comprehensive reverse engineering
of Apple DMPs.

• Develop DMP-aided chosen-
input attack framework.

Augury1

This Work

Contribution

31

Augury1

1 Vicarte, et al., "Augury: Using data memory-dependent prefetchers to leak data at rest”, SP’22.

• Comprehensive reverse engineering
of Apple DMPs.

• Develop DMP-aided chosen-
input attack framework.

• Undermine four cryptographic
implementations in the wild or
submitted to NIST PQC
standardization.

This Work

Key Observations of Apple DMP

32

How do classical prefetchers
work?

Key Observations of Apple DMP

33

How do classical prefetchers
work?

arr[0] arr[1] arr[2] arr[N-1]… arr[N] arr[M-1]…

Training Prefetching

// stride pattern
for (i = 0; i < M; i++)

trash += arr[i];

stride
prefetcher

The program reads arr[0],
arr[1], …
The stride is 1! Prefetch
arr[N], arr[N+1],…

Key Observations of Apple DMP

34

What is the finding of prior
work, Augury?

arr[0] arr[1] arr[2] arr[N-1]… arr[N]

* * * * *

arr[M-1]

*

…

Training Prefetching

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];

Augury

DMP recognizes and
prefetches Array-of-
pointers access pattern!

Dereferenced by code

Dereferenced by DMP

Key Observations of Apple DMP

35

Does memory access pattern
even matter?

GoFetch

Really? Is it
necessary?

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];

Key Observations of Apple DMP

36

Does memory access pattern
even matter?

arr[0]

*
GoFetch

Load

Really? Is it
necessary?

// Single load
trash += arr[0];

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];

Dereferenced by DMP

Key Observations of Apple DMP

37

Does memory access pattern
even matter?

arr[0]

*
GoFetch

Load

arr[1] arr[2] arr[7]…

* * *

Cache Line Aligned

Really? Is it
necessary?

// Single load
trash += arr[0];

// Array-of-pointer pattern
for (i = 0; i < M; i++)

trash += *arr[i];

Dereferenced by DMP

Key Observations of Apple DMP

38

Where does the DMP scan
for pointers?

arr[0] arr[1] arr[2] arr[7]…

* * * *

Load L1 Fills

Cache Line Aligned

// Single load
trash += arr[0];

Dereferenced by DMP

Key Observations of Apple DMP

39

How does DMP determine
pointers to dereference in
each line?

arr[0] arr[1] arr[2] arr[7]…

* * * *

Load L1 Fills

Cache Line Aligned

Dereferenced by DMP

Key Observations of Apple DMP

40

History filter: how DMP
avoids redundant
dereference?

…

Do-not-scan hint: how DMP
avoids redundant scan?

4GByte region: heuristic
of predicting pointer
value.

Top byte ignore: how
DMP synergizes with
TBI?

…

Check out the paper!

41

How to use DMP to break CT Crypto?

42

How to use DMP to break CT Crypto?

sec

ci
cstate

ptr if sec=A

No ptr if sec=B

ci: chosen input sec: secret

cstate: crypto state

43

How to use DMP to break CT Crypto?

sec

ci
cstate

ci: chosen input sec: secret

cstate = ci AND sec

0xffffffffffffffff
0x0000000000000000

sec

cstate: crypto state

44

How to use DMP to break CT Crypto?

Choose ci as valid pointer!
cstate = ptr AND sec

if sec = 0xffffffffffffffff
=> cstate = ptr

if sec = 0x0000000000000000
=> cstate = 0

sec

ci
cstate

ci: chosen input sec: secret

cstate = ci AND sec

0xffffffffffffffff
0x0000000000000000

sec

cstate: crypto state

45

How to use DMP to break CT Crypto?

DMP *ptr

DMP

sec

ci
cstate

Choose ci as valid pointer!
cstate = ptr AND sec

if sec = 0xffffffffffffffff
=> cstate = ptr

if sec = 0x0000000000000000
=> cstate = 0

ci: chosen input sec: secret

cstate = ci AND sec

0xffffffffffffffff
0x0000000000000000

sec

cstate: crypto state

Proof-of-Concept Attacks
Cryptanalysis

for DMP exploit

46

End-to-end key
extraction PoCs

Proof-of-Concept Attacks
Cryptanalysis

for DMP exploit

47

End-to-end key
extraction PoCs

OpenSSL
DHKE

Proof-of-Concept Attacks
Cryptanalysis

for DMP exploit

48

End-to-end key
extraction PoCs

OpenSSL
DHKE

Go RSA

Proof-of-Concept Attacks
Cryptanalysis

for DMP exploit

49

End-to-end key
extraction PoCs

OpenSSL
DHKE

Go RSA

ML-DSA ML-KEM

Proof-of-Concept Attacks
Cryptanalysis

for DMP exploit

50

End-to-end key
extraction PoCs

Classical

Crypto

Post-Quantum

Crypto

Digital
Signature

Key
Exchange

OpenSSL
DHKE

Go RSA

ML-DSA ML-KEM

Go RSA

51

𝑁 = 𝑝 × 𝑞

52

𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁

𝑁 = 𝑝 × 𝑞

RSA Decryption

Go RSA

53

𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁
𝑐𝐷𝑝 𝑚𝑜𝑑 𝑝

𝑐𝐷𝑞 𝑚𝑜𝑑 𝑞

CRT OptimizationRSA Decryption

Go RSA

𝑁 = 𝑝 × 𝑞

54

𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁
𝑐𝐷𝑝 𝑚𝑜𝑑 𝑝

𝑐𝐷𝑞 𝑚𝑜𝑑 𝑞

CRT Optimization

𝑐 𝑚𝑜𝑑 𝑝

First StepRSA Decryption

Go RSA

𝑁 = 𝑝 × 𝑞

55

𝑚 ≡ 𝑐𝑑 𝑚𝑜𝑑 𝑁

RSA Decryption

𝑐𝐷𝑝 𝑚𝑜𝑑 𝑝

𝑐𝐷𝑞 𝑚𝑜𝑑 𝑞

CRT Optimization

𝑐 𝑚𝑜𝑑 𝑝

Observations of crypto state 𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input and 𝑝 is secret.

• If 𝑐 < 𝑝, then 𝑐 𝑚𝑜𝑑 𝑝 = 𝑐, else 𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝.

First Step

Go RSA

𝑁 = 𝑝 × 𝑞

56

Observation of
𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input
and 𝑝 is victim’s
secret.

• if 𝑐 < 𝑝,
𝑐 𝑚𝑜𝑑 𝑝 = 𝑐

• if 𝑐 ≥ 𝑝,

𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝

𝑝

𝑐 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏0000… ∥ 𝒑𝒕𝒓

𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝒙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥

Target i-th bit of 𝑝 and
set input as 𝑐 = 𝑝𝑟𝑒𝑓𝑖𝑥 ∥ 10000… ∥ 𝑝𝑡𝑟 !

Go RSA

i-th bit

57

Observation of
𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input
and 𝑝 is victim’s
secret.

• if 𝑐 < 𝑝,
𝑐 𝑚𝑜𝑑 𝑝 = 𝑐

• if 𝑐 ≥ 𝑝,

𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝

𝑝

𝑐 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏0000… ∥ 𝒑𝒕𝒓

𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝒙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥

Target i-th bit of 𝑝 and
set input as 𝑐 = 𝑝𝑟𝑒𝑓𝑖𝑥 ∥ 10000… ∥ 𝑝𝑡𝑟 !

Go RSA

i-th bit

• if 𝑝 = 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥 𝑝 > 𝑐

• then 𝑐 𝑚𝑜𝑑 𝑝 = 𝑐 = ⋯ ∥ 𝒑𝒕𝒓

• if 𝑝 = 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟎𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥. 𝑝 < 𝑐

• then 𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝 = 𝒖𝒏𝒌𝒏𝒐𝒘𝒏

58

DMP recovers upper 560 bits
+ Coppersmith2

= full extraction!

2 Coppersmith, ”Finding a small root of a bivariate integer equation; factoring with high bits known”, EUROCRYPT’96.

Observation of
𝑐 𝑚𝑜𝑑 𝑝:

• 𝑐 is chosen input
and 𝑝 is victim’s
secret.

• if 𝑐 < 𝑝,
𝑐 𝑚𝑜𝑑 𝑝 = 𝑐

• if 𝑐 ≥ 𝑝,

𝑐 mod 𝑝 = 𝑐 − 𝑙𝑝

𝑝

𝑐 𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝟏0000… ∥ 𝒑𝒕𝒓

𝒑𝒓𝒆𝒇𝒊𝒙 ∥ 𝒙𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥…𝑥

Target i-th bit of 𝑝 and
set input as 𝑐 = 𝑝𝑟𝑒𝑓𝑖𝑥 ∥ 10000… ∥ 𝑝𝑡𝑟 !

Go RSA

i-th bit

CRYSTALS-Kyber (ML-KEM)

59

• CCA-KEM built on a CPA-PKE scheme.

CRYSTALS-Kyber (ML-KEM)

60

• CCA-KEM built on a CPA-PKE scheme.

Key Mismatch Attack3

3 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

CRYSTALS-Kyber (ML-KEM)

613 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒)

CRYSTALS-Kyber (ML-KEM)

623 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…𝑚

CRYSTALS-Kyber (ML-KEM)

633 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…𝑚

𝟎~𝒒 𝟎~𝒒 𝟎~𝒒…𝑒

Kyber-512: 𝒒 = 𝟑𝟑𝟐𝟗

CRYSTALS-Kyber (ML-KEM)

643 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…𝑚

𝟎~𝒒 𝟎~𝒒 𝟎~𝒒…𝑒

Kyber-512: 𝒒 = 𝟑𝟑𝟐𝟗

chosen
inputs

CRYSTALS-Kyber (ML-KEM)

653 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…𝑚

𝟎~𝒒 𝟎~𝒒 𝟎~𝒒…𝑒

Kyber-512: 𝒒 = 𝟑𝟑𝟐𝟗

chosen
inputs

𝑚′ = 𝐷𝑒𝑐(𝑐, 𝑠𝑘)

secret

CRYSTALS-Kyber (ML-KEM)

663 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

Key Mismatch Attack3

𝑐 = 𝐸𝑛𝑐(𝑚, 𝑝𝑘, 𝑒) 𝑚′ = 𝐷𝑒𝑐(𝑐, 𝑠𝑘)

𝟏/𝟎 𝟏/𝟎 𝟏/𝟎…

𝟎~𝒒 𝟎~𝒒 𝟎~𝒒…

𝑚

𝑒

Kyber-512: 𝒒 = 𝟑𝟑𝟐𝟗

chosen
inputs

𝑚′ = 𝑚

secret

(𝑠𝑘∗, 𝑒∗) 𝑚′ ≠ 𝑚

CRYSTALS-Kyber (ML-KEM)

67

𝑚′ 𝑖 = 𝑚 𝑖𝑠𝑘 𝑖 <
𝑞

4
− 𝑒[𝑖]

𝑚′ 𝑖 ≠ 𝑚 𝑖𝑠𝑘 𝑖 ≥
𝑞

4
− 𝑒[𝑖]

Key Mismatch Attack3

3 Qin et al., ”A Systematic Approach and Analysis of Key Mismatch Attacks on Lattice-Based NIST Candidate KEMs”, ASIACRYPT’21.

CRYSTALS-Kyber (ML-KEM)
• CCA-KEM built on a CPA-PKE scheme.

• FO transformation wraps CPA to CCA.

68

Kyber PKE

𝑚′?= 𝑚

Kyber

FO

Observations of
decrypted message
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and
𝑒 are chosen
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .

CRYSTALS-Kyber (ML-KEM)
• CCA-KEM built on a CPA-PKE scheme.

• FO transformation wraps CPA to CCA.

69

Kyber PKE

𝑚′?= 𝑚

Kyber

FO DMP

Observations of
decrypted message
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and
𝑒 are chosen
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .

CRYSTALS-Kyber (ML-KEM)

70

Set 𝑚 as 𝑝𝑡𝑟 ∥ 0…0 and tweak 𝑒[0]!

• if 𝑒 + 𝑠𝑘 𝟎 <
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓||0…0

• if 𝑒 + 𝑠𝑘 𝟎 ≥
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓′||0…0

𝒑𝒕𝒓

No 𝒑𝒕𝒓

Observations of
decrypted message
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and
𝑒 are chosen
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .

CRYSTALS-Kyber (ML-KEM)

71

Set 𝑚 as 𝑝𝑡𝑟 ∥ 0…0 and tweak 𝑒[0]!

3 May et al., ”Too Many Hints – When LLL Breaks LWE”, ASIACRYPT’23.

DMP recovers 392 indexes

+ Lattice Reduction3

= full extraction!

• if 𝑒 + 𝑠𝑘 𝟎 <
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓||0…0

• if 𝑒 + 𝑠𝑘 𝟎 ≥
𝑞

4

• then 𝑚′ = 𝒑𝒕𝒓′||0…0

𝒑𝒕𝒓

No 𝒑𝒕𝒓

Kyber-512:

Observations of
decrypted message
𝑚′:

• 𝑠𝑘 is secret, 𝑚 and
𝑒 are chosen
inputs.

• if 𝑒 + 𝑠𝑘 [𝑖] <
𝑞

4
,

𝑚′ 𝑖 = 𝑚 𝑖 .

• if 𝑒 + 𝑠𝑘 𝑖 ≥
𝑞

4
,

𝑚′ 𝑖 ≠ 𝑚 𝑖 .

Impact

72

• Apple: Disable DMP with DIT=1
• Only works on M3.

Impact

73

• Apple: Disable DMP with DIT=1
• Only works on M3.

• Go: Propose an opt-in DIT mode
in Go binary.

Impact

74

• Apple: Disable DMP with DIT=1
• Only works on M3.

• Go: Propose an opt-in DIT mode
in Go binary.

• Asahi Linux: Found chicken bit
to disable DMP on M1/M2.

75

• Apple: Disable DMP with DIT=1
• Only works on M3.

• Go: Propose an opt-in DIT mode
in Go binary.

• Asahi Linux: Found chicken bit
to disable DMP on M1/M2.

Impact

• Pwine Awards: Best Cryptographic
Attack winner.

Conclusion

76

gofetch.fail

Check our Website:

boruc2@illinois.edu

• Data memory-dependent
prefetchers (DMPs) performs
secret-dependent memory access
to leak data.

• Exploiting DMPs to perform key
extraction attacks to constant-time
cryptography is feasible.

https://gofetch.fail/

